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SUMMARY

A method for solving the Navier-Stokes equations based on splitting the
velocity vector into its rotational and irrotational parts has recently been
applied successfully to internal flow computations. In this paper, the appli-
cability of the method to external flows is examined by studying several model
problems. The model problems are those of laminar and turbulent incompressible
flow past a semi-infinite flat plate and laminar incompressible flow past a
finite flat plate. For these problems, the procedure accurately reproduces the
known solutions and is computationally very efficient even at high Reynolds
numbers. Computational aspects of the method are discussed along with the
possibility of using the procedure to retrofit a viscous capability into
existing potential-flow codes.

INTRODUCTION

In recent years techniques for predicting the viscous flows over airfoils
have been developed based on the numerical solution of the Navier-Stokes equa-
tions (ref. 1). Although such solutions are useful, their speed of convergence
is limited by the speed at which the basic numerical scheme can solve the Euler
equations. For example, the method of Beam and Warming (ref. 2) solves the
full Navier-Stokes equations in 20 percent more time than the same method takes
for the Euler equations. An alternative to the direct solution of the Navier-
Stokes equations has recently been proposed by Dodge (ref. 3). According to
Dodge, the velocity vector is split into its rotational and irrotational compo-
nents. This split, coupled with an appropriate identification of the pressure,
leads to a modified potential equation for the pressure field and a set of
transport equations for the rotational component of the velocity. The poten-
tial equation and the transport equations are then solved separately, with
their coupling accounted for by iteration. The advantage of this method is
that all the well-developed technology for solving the potential equation can
be used for solving the pressure-field equation. Such a procedure can thus
take advantage of the more rapid solution procedures available for the poten-
tial equation compared with the Euler equations.

The technique proposed by Dodge has primarily been applied to internal
flows (ref. 3). Consequently, an investigation was started to examine the
suitability of the procedure for solving external flows with the goal of
calculating viscous flow fields about airfoils.

In the current investigation, several aspects of the procedure used by
Dodge are investigated. The first question addressed in the current work is
whether the procedure accurately recovers known solutions to the Navier-Stokes
equations for laminar flows. Secondly, the suitability of the procedure for
predicting turbulent flows is examined. Both of these questions are studied by
calculating high Reynolds number flow over a semi-infinite flat plate. It is
recognized that the semi-infinite plate problem can be handled well by conven-



tional boundary-layer theory. The final phase of the study is therefore
involved with solution of a problem that cannot be treated by the usual
boundary-layer methods. The problem of interest in this report is the
detailed prediction of the laminar flow in the vicinity of the trailing edge
of a finite flat plate. Computed results for all three problems studied are
compared with known solutions.

Use of trade names or names of manufacturers in this report does not con-
stitute an official endorsement of such products or manufacturers, either
expressed or implied, by the National Aeronautics and Space Administration.

SYMBOLS
A, constant in x-direction coordinate stretch
Ay constant in y-direction coordinate stretch
B ’ coordinate scale factor (see eq. (13))
Cc constant in coordinate transformation
Ce skin-friction coefficient
F reciprocal of mesh interval in x-direction
G reciprocal of mesh interval in y-direction
I number of iterations to convergence
M maximum mesh increment counter in x-direction
N maximum mesh increment counter in y-direction
p pressure coefficient with triple-deck scaling
P pressure
R Reynolds number based on free-~stream conditions
Ry Reynolds number based on x
r residual of continuity equation
U x-component of total velocity vector with triple-deck scaling
u x~component of total velocity vector
up x~component of rotational part of velocity vector
v total velocity



Ve rotational part of velocity

v y-component of total velocity vector

vp y-component of rotational part of velocity vector

X longitudinal coordinate

31 longitudinal coordinate when mesh increment counter is 1
X stretched x-coordinate

Xq stretched x-coordinate when mesh increment counter is 1
Yy normal coordinate

v stretched y-coordinate

o grid stretching parameter

B,6p constants ip free-stream potential function

) boundary-layer thickness

€ eddy viscosity

n normal coordinate in Gortler transformation

Aq ratio of local wall shear to local Blasius theory wall shear
3 longitudinal coordinate in Gortler transformation

p density

¢ irrotational velocity potential

¢ perturbation irrotational velocity potential

b unperturbed irrotational velocity potential

X longitudinal coordinate with triple-deck scaling
Subscripts:

m mesh increment counter in x-direction

n mesh increment counter in y-direction

te trailing-edge location

x,5 differentiation in x-direction



VAl differentiation in y-direction

© free-stream conditions
Superscripts:
I global iteration counter

turbulent fluctuating quantity

- vector quantity

PROBLEM FORMULATION
Governing Equations

In the present work the governing equations are the incompressible Navier-
Stokes equations. These equations may be written as

V-Vv=o0 )
VWV =-=Vp-r1WKxVxvy (2)

where lengths have been nondimensionalized by a reference length L, velocity

1
by the free-stream velocity V., and pressure by —pV«?. The velocity vector
2

T is split into rotational and irrotational components according to the
relation

v =90+, (3)

Further, the pressure is defined, as discussed in reference 3, in terms of the
irrotational component as

1
p=C-—Vd + Vo (4)
2
where C 1is an arbitrary constant. Substitution of equations (3) and (4) into
equations (1) and (2) gives

V20 = -V - ¥,



G - Byte + e+ - Tlvp = mW x T x T,

For turbulent flow in two dimensions, these equations can be time averaged
and expanded to give

xx + Syy = ~(up)x = (Vply (5)

Urlyx + Vedxy + (Ox + up) (up)x + (By + vp) (up)y R"I:(ur)yy + (v2¢>)x] - (u'v)y

(6)

Urbyy + Vedyy + Oy + up) (Ve)x + (Oy + V) (Vi) y R"][(vr)yy + (Vzé)y] (7)

The only component of the Reynolds stress tensor retained is the u'v' usually
retained in boundary-layer theory. Streamwise diffusion is neglected.

In the current work, with streamwise diffusion neglected, equations (6)
and (7) are parabolic. However, equation (5), the pressure equation, still
retains its elliptic character. Note that this system of equations has more
generality than the usual boundary-layer equations; it admits a normal pressure
gradient in the viscous layer. It is also more general than the usual "parabo-
lized" Navier-Stokes equations; it does not require a split of the pressure
into a known marching direction pressure gradient and a viscous perturbation
pressure field. (See, e.g., ref. 4.)

Boundary Conditions

As indicated in the Introduction, the problem of interest in the current
investigation is laminar and turbulent flow over semi-infinite and finite flat
plates. The computational domain considered and the associated boundary condi-
tions on the primitive variables are shown in figure 1. The leading edge of
the plate was excluded from the computational domain. Therefore, techniques
for dealing with the leading-edge singularity did not have to be considered
(ref. 5). This subject is left to a future investigation. The inflow boundary
of the computational domain is taken sufficiently far downstream of the plate
leading edge that effects of the plate leading-edge singularity have vanished
and the flow is well described by the Blasius boundary-layer profile with an
undisturbed external flow (which is not precisely accurate, but is accurate to
Rx"l/2 for large enough distances from the leading edge).
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The boundary conditions on ¢ and V, are obtained from the boundary
conditions on the primitive variables as follows:

Wall boundary

ur = Py
vp =%y, =0
Wake centerline boundary
(ur)y Ve =0
(y =0, x> Xge)

Since the flow is irrotational outside the boundary layer, the rotational com-
ponent of velocity must vanish outside the boundary layer.

y + © boundary

A
»
A

(y > < 1

)

where ¢ represents some as yet unspecified potential function.

X > o boundary

A

o = ¢ (x> 05yS ®

No boundary conditions are required on u, and v, as x * ©, since the
transport equations governing their evolution are parabolic.

The boundary conditions along the line x = 1 pose a particular problem
for the present method, since the splitting of the known total velocity vector
into rotational and irrotational components is not unique. The initial choice
made in the present investigation was the Blasius velocity profile and zero
longitudinal pressure gradient.

Inflow boundary condition

u =u - (¢a)x x=1, 0 o) (8a)

A
<
A



ve =V - ($0)y (x =1, 0S5y S x (8b)
% =0 (x=1, 0S5y s ® (8c)

However, computational results forced modification to these conditions which
are discussed in some detail in a subsequent section.

Turbulence Model

The Reynolds stress term in equation (6) is modeled with the usual eddy
viscosity assumption; that is,

du
_ulvl = £ —
ay

Substitution of the x-component of equation (3) into the preceding equation
gives

—u'v' = €(up)y + gy (9)

Substitution of equation (9) into equation (6) leaves the specification of €
to close the system of governing equations. In the present work, a two-layer
eddy viscosity formulation is used, as discussed by Cebeci and Smith (ref. 6).
In the inner region the formulation is based on Prandtl's mixing-length model
along with the Van Driest damping factor. In the outer region, Clauser's
velocity defect model is used. No normal intermittency is used.

SOLUTION OF GOVERNING EQUATIONS
General Solution Strategy

In the present work, the governing equations, equations (5) to (7), are
solved with a finite-difference procedure. The general strategy of the
solution, as proposed in reference 3, is to solve equation (5) separately from
equations (6) and (7), and to account for their coupling iteratively. This
procedure allows the use of the technology available for solving the potential
equation, thus treating the pressure-field solution as an elliptic problem,
while still solving the viscous portion of the flow field with a marching
calculation.

In practice, the solution procedure is started by first determining the
inviscid pressure field by specifying an initial potential function which sat-
isfies equation (5) with the right-hand side set to zero. Once the ¢ field is
established, the u, and v, fields are established by solving equations (6)



and (7) with a marching solution initiated by the assumed profile at x = 1.
All the required ¢ derivatives in equations (6) and (7) are known functions
and are calculated rom, the solution of equation (5). Once the u, and v,
fields are found, * Vr can be calculated and treated as a known source
term for the solution of equation (5). This process is continued until the
continuity equation is satisfied throughout the field to some required degree
of tolerance; that is,

>
IIII = I(V2¢)I + (V- Vr)Il < Tolerance (1 <x<® 0SLy<x (10)
where the superscript I refers to iteration number.

Transformation of Momentum Equations

Examination of equations (6) and (7) reveals that they need only be solved
in regions where the velocity has a nonzero rotational part; that is, in the
viscous layer. 1In most situations the viscous layer has the characteristic
that its thickness increases in the streamwise direction. For this reason, the
boundary-layer equations are usually transformed into a coordinate system in
which the height of the viscous layer is approximately constant. For compara-
tive purposes, a similarity transformation is introduced in the current inves-
tigation by introducing Gortler scaling on the normal coordinate.

The x-coordinate is now alined with the free-stream direction and the fol-
lowing new independent variables are introduced:

E=x (11)
-1
n-= [B(E)] Y (12)
where
B(E) =1 (13a)

if the normal coordinate is not transformed, and
B(E) = (2§)1/2 (13b)

if the normal coordinate is transformed by Gortler scaling. In these new
variables, equations (6) and (7) become, after substitution of equation (9),



B2 (up®yy + velsy) + B2(up + &) (up)g + [B(Vr + Q) - Bn(u, + ¢xﬂ (ur)
= R7! {[(1 + €) (ur)n:’ + B2(V20), - 32(s®xy)§ (14)
n
Bz(urfbxy + vpdyy) + B2 (u, + Oy) (vp) g + [B(vr + Q) - Bn(u, + @xﬂ (ve)n
= R71[ (vp)qn + B2(V20) ] (15)
where B = (B - 1)/(25 - 1).

Numerical Method

Solutions to the system of equations (5), (14), and (15), with their asso-
ciated boundary conditions, are obtained with finite-difference methods. Since
equation (5) and equations (14) and (15) are of different types, the numerical
techniques used in their solution differ. Equation (5) is solved by the
successive line overrelaxation method (SLOR) discussed in reference 7; equa-
tions (14) and (15) are solved by using an implicit marching technique.

Consider first the finite-difference mesh used in the solution. 1In all
cases, the equations are solved on nonuniform meshes. Stretched Cartesian
coordinates are used in the solution of the potential equation (eq. (5)) for
all cases, and are used in the solution of the viscous equations (egs. (14)
and (15)) when B = 1. The general mesh notation is indicated in figure 2.

The nonuniform Cartesian mesh is obtained by coordinate transformations of
the form

X = ——— & x, (16)

Yy =—— (17)

\f‘ -y

where x5 = 0 for the semi-infinite flat-plate case and xo = xte for the
finite flat-plate case. The actual computations are carried out in the X,¥
plane with a uniform mesh. The step sizes in the X- and y-directions are



AR =
M-1
- 1
Ay =
N -1
X3
where C =1 for the semi-infinite plate, C = 1 + —————— for the finite

\’sz + i] 2

When B = (2&)1/2, different meshes are used in the solution of equa-
tion (5) and equations (14) and (15). For this case, the stretched Cartesian
grid is used for equation (5), whereas the n-coordinate in equations (14)
and (15) is stretched using the Roberts transformation (ref. 8). This trans-
formation can be written as

plate, and Xy = X¢e ~ 1.

n = nmax{ - I:(a + 1) (17N - 1):":(01 - 1) (al"N + 1)]—1}

where 0 1is a stretching parameter. Equation (16) is still used to stretch
the x-coordinate.

Now consider the solution to equation (5). In the present work, equa-
tio§ (5) is solved for a disturbance potential by writing
V20 = V2(¢_ + ¢) = -V oy,
and, since ¢_ is chosen such that
V2 _ =0

then

V2p = V - ¥, (18)

10



Now Fp and G, are defined as

q &%
fn = T
L dy
G = (Ay) 1-6;

With this notation, equation (18) is discretized according to

Oxx = [(¢m+1 n = Om,n)Pn+(1/2) - Gmyn - ¢m—1,n)Fm—(1/2)]Fm (19a)

by = [ @u,n41 = bm,m)Cne(1/2) = Omn - ®m,n-1)Cn-(1/2) |n (19b)

The boundary conditions are discretized according to

¢m,1 = %m,3 2<msM-1)
d1,n = 92,n (1 £nsN)
bm,n = O ME<msM-1)
OM,n = 0 (2$nsN

The discretized representation of equation (18) is solved by the SLOR procedure
with y as the implicit direction and with the procedure .sweeping from n = 2
to n=N-1 on each iteration cycle. The most recent values of ¢ are used
whenever possible. The Thomas algorithm is used to solve the set of implicit
tridiagonal equations along each line where m is constant. If Im,n 1is
defined as

I(V2¢)m,n + (3 : zr)m,nl

11



then convergence is achieved when

1
rm.né'z‘(A§2+A§2) 2SmSM-1, 25 nsEN-1)

Now consider the solution of the rotational-velocity-component momentum
transport equations, equations (14) and (15). These equations are parabolic
in the £-direction and hence are solved by downstream marching from an ini-
tial profile located at § = 1. If g denotes either u, or vy, then
equations (14) and (15) are discretized according to

1

(9x)m,n = ;(39m,n - 49p-1,n * Im-2,n)Fn (20a)

1
(9y)m,n = E(Qm,n+1 = 9m,n-1)Gn ' (20b)
(9yy)m,n = [(9m,n+1 = 9m,n)C%n+(1/2) ~ (9m,n = 9m,n—1)Gn-(1/2)]Gn (20¢)

If these equations were substituted directly into equations (14) and (15), a
set of N - 2 simultaneous nonlinear algrebraic equations would result along
the mth column. Thus, before discretization, equations (14) and (15) are
quasi-linearized. When f is either a u, or v, derivative, then

(£9)m,n = (£ m,n + () m,n - (£dm,n

where the tildes mean guessed values. Substitution of these relations into
equations (14) and (15) yields a set of 2(N - 2) simultaneous linear alge-
braic relations. The equation set can be completed by using the boundary
conditions

(updm,1 = = @x)Im,1

(Vedm,1 = =(®y)m,1

12



(up)p,n = 0
(Vvedm,y = 0

This system of equations is then solved by the Gaussian elimination for a
2 x 2 block tridiagonal matrix.

Quasi-linearization of the viscous term requires special attention in
turbulent cases. The nonlinear viscous term in equation (14) can be written
as

3 du, 3 duy [dup
(1 +e)—|=—(|1 +a(d) + b —
on an an an [an

where a(8) is a function of boundary-layer thickness § and b is a con-
stant (ref. 9). The quasi-linear form is then

2
3 . duy |duy ol
—<]1 + a(d) + 2b — - b{—
an an |9n an

du

r

As can be seen, this form does not properly quasi-linearize the term a(9d) 5——,
n

since § is a function of the local solution. With this form, quadratic con-
vergence is obtained on the column iterations for the laminar cases, whereas
for the turbulent cases a 20-percent decrease in computer time over Picard
iteration is achieved.
-+ ->
In the solution of equation (5), V * V, is treated as a known quantity

at each mesh point. 1In the solution of equations (14) and (15), however, +¢

and all its required derivatives are treated as known. The quantity * Ve
is numerically evaluated for each rotational-velocity-component calculation by
using equations (20a) and (20b). The quantities ¢xx and ¢ are calculated

after each solution for @ by using equations (19) along with known values of
b and ¢ In addition, the following relationships are used to obtain

Cxx yy*

other required derivatives of ¢.

1
®x)m,n = ;(¢m+1,n ~ dp-1,n)Fn + (¢ak)m,n

13



1
(®)m,n = ;(¢m,n+1 = ®m,n-1)Gn + (¢my)m'n

1
(®xy)m,n = z‘¢m+1,n+1 - ¢n-1,n+1 + ®m-1,n-1 = Om+1,n-1)FmGn + <¢“xy>m,n
(VZQ)m,n = (Oxx)m,n + (OyyIm,n

[(V2¢)x]m n = %{(V2¢)m+1,n - (v2¢)m-1,n]Fm

1
[(V2¢)y]m 0 ;{(V2¢)m,n+1 - (v2¢)m,n-1]Gn

Since these quantities are required only on interior mesh points, special
formulas on the boundaries are not required.

It should be noted that in the actual programming of the scheme, provision
was made for resolving the rotational component of velocity on a finer mesh than
the irrotational component. When B = 1, this was done by breaking up the x-
and/or y-increments in the computational plane into the desired integer number
of subincrements. When this provision was made, the derivatives of ¢ required
in the solution of equations (14) and (15) were linearly interpolated onto the
finer grid.

When Gartler variables are used f%r sQlution of equations (14) and (15),
linear interpolation on both ¢ and * Vy 1is used.

RESULTS AND DISCUSSION

As discussed previously, three test cases were chosen for computation with
the split Navier-Stokes formulation. These cases are the laminar and turbulent
semi~-infinite flat plate and the finite flat plate. The computer results for
these test cases are discussed separately in the following sections.

Laminar Semi-Infinite Flat Plate

It is well known that a singularity exists in the pressure and vorticity
at the leading edge of a flat plate (ref. 5). Rather than deal with this
problem in the current investigation, all solutions were initiated a suffi-
cient distance downstream of the leading edge such that the effects of this

14



singularity were negligible. According to reference 5, at a Reynolds number
based on distance from the leading edge Ry of 104 the boundary layer is well
described by the Blasius velocity profile. For the current computations, the
free-stream conditions were such that Ry = 104 for x = 1. The initial com-
putations were started at x = 1 with the Blasius velocity profile. This pro-
file was generated in the program itself by numerical solutions of the appro-
priate nonlinear ordinary differential equations (ref. 10).

In order to initiate the calculation, a choice had to be made for ¢r the
basic potential function. The most obvious choice to make was

¢ = x + Constant (21)
(o]

since this represents the undisturbed inviscid flow about a flat plate. This
choice led to immediate difficulties in equation (8b) since (d)oo)y is zero
everywhere. Use of the Blasius-predicted v in equation (8b) would then lead
to nonzero values of v as y * ®©, which is physically incorrect. For this
reason, v was arbitrarily set to zero along the initial profile when this
form was chosen for ¢_.

A second possible choice for ¢_ is that for flow about the displacement
body presented by the plate boundary layer to the inviscid flow. It is well
known that the flat-plate displacement body is a parabola which has infinite
thickness as x * ©. In fact, the velocity potential is infinite as y + «
for such bodies, whereas the boundary conditions and equation (21) indicate a
finite value for the potential function as y > ®., One way to alleviate this
difficulty is to choose the potential function for flow about the Blasius
displacement-body parabola for ¢_; that is,

BR™1/2 v

V2 [x . o+ y2)1/2:]1/2

where B = Bg = 1.72078765 for the Blasius displacement body (ref. 11).
Note that when B = 0 the uniform-stream potential function is recovered.
The preceding potential function predicts nonzero values of (¢°°)y along
the initial data line; that is,

1/2
BR-1/2 [x + (x2 + y2)1/2]
2) 1/2

by =
¥ 2V§ (x2 +y

15



Thus, the normal-velocity profile on the inflow boundary is assumed to have the
following form:
o 4

VBlasius
Pes
y
T
0 (o 0]
Normal-velocity components
Vr = VBlasius ~ (0x)y VBlasius £ (®u)y
Ve = =)y VBlasius ~ (¢m)y

Also, since (q)m)y #0 along y = 0, the surface boundary condition becomes
Ve = = (d)y (y =0, 1S5 x < »

Calculations were made for the semi-infinite plate using these two
free-stream potential functions on a mesh with 41 points in the x-direction
and 58 points in the y-direction, and with Ay = 20 and Ay = 0.22. For
the case where B = BB, the calculation was stopped when the convergence
criterion was satisfied, a total of 44 global iterations (i.e., iterations
between eq. (5) and egs. (14) and (15)). Convergence was extremely slow for
the B =0 case, howe er,,and the calculations were arbitrarily stopped after
200 iterations with |V - Vlmax = 6.48 x 10”4 and the wall shear converged

16



to four decimal places of accuracy. The distribution of 11, the ratio of pre-
dicted wall shear to the local Blasius value, along the plate is presented in
figure 3 for these cases. As can be seen, the predicted wall shear immediately
departs from the Blasius value in the vicinity of x =1 1in both solutions.
This is attributed to the arbitrary split of the initial velocity distribution
into its rotational and irrotational parts. For the case with B = Bg, the
Blasius wall shear is quickly recovered further down the plate, whereas the
case with B = 0 never recovers the Blasius solution. This behavior is
attributed to the fact that the solution obtained with B = Bg accounts for
the interaction, however weak, between the boundary layer and inviscid flow.
The choice of B = 0 coupled with the boundary condition as y + « ignores
this interaction and forces the potential function to vanish as y + ©, This
leads to serious errors, as can be seen in figure 4, in the prediction of the
normal-velocity component all the way down to the wall. The conclusion drawn
from these calculations was that for interaction calculations involving infi-
nite bodies, the proper choice of boundary conditions at y * ® is crucial.

No further calculations were made with B = 0 for the semi-infinite plate.

After establishing the ability of the split equations to accurately
reproduce the Blasius solution yith coincident meshes for both the pressure
(i.e., ¢) and viscous (i.e., Vy) solutions, calculations were performed with
increasingly coarsened (in the y-direction) pressure meshes while holding the
viscous mesh constant. This was accomplished by holding Ay the same on both
grids and successively halving the number of points in the y-direction for the
pressure calculation. The resulting pressure grid points all coincided with
viscous grid points with an integral number of viscous grid points between.
Three successive halvings of the number of pressure-mesh points were done over
the 41 x 58 mesh. The results of these calculations are presented in table 1
in terms of the percent error in friction drag relative to the Blasius value
over the interval 1 £ x S 90.12, along with the number of iterations to con-
vergence and computer time required. All runs were converged to the truncation
error of the pressure mesh. Little accuracy is lost by the coarsening of the
pressure mesh, and there is a substantial savings in computer time. The con-
vergence histories of these calculations are presented in figure 5. Coarsening
of the pressure mesh is shown to accelerate the overall convergence rate.

To further assess the potential of the velocity-split formulation, addi-
tional calculations were carried out with entirely independent meshes for the
pressure and viscous calculations by choosing B = (2£) /2, fhis allowed the
number of viscous mesh points in the boundary layer to be held constant at
about 40 points over the entire length of the plate. 1In this case, the viscous
grid was again held fixed and A, was varied. Results of these calculations
are presented in table 2. 1In thils table, the ratio of the pressure-mesh incre-
ment to the viscous mesh increment at the wall is used as a measure of the grid
coarsening. It should be noted that in the solutions for mesh ratios of 32.90
and 65.79 (Ay = 3.52 and 7.04) the global iteration had to be underrelaxed in
order to achieve convergence. The reason for the deterioration of the solution
accuracy on the coarser pr%ssu;e grids is obvious from figure 6. 1In this fig-
ure, the distribution of * Vr across the boundary layer is plotted
along with the location of both the viscous and pressure-mesh points. As can
be seen, when the pressure gr%d ig coarsened to the point that it can no longer
resolve the distribution of * Vy, serious deterioration in accuracy
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occurs. Also presented in table 2 are the error in the local wall shear at

X = 33.33 and the number of pressure-mesh points in the boundary layer. These
data can be interpreted as a first-order estimate of the number of pressure
mesh points that are required in the boundary layer to give adequate resolu-
tion. From table 2 it can be seen that between 5 and 10 pressure-mesh points
are required within the boundary layer to accurately predict the local wall
shear.

Turbulent Semi-Infinite Flat Plate

The semi-infinite plate was also run for the turbulent case. 1In this
case, the value of Ry was 1.0 x 106 at x = 1.0. The solution was started
from the Blasius solution at x = 1.0, and instantaneous transition was arbi-
trarily introduced at x = 2.44 (m = 4). For this case the value of B was
the laminar value since the exact potential-flow solution about the turbulent
displacement body was not known.

The distribution of skin friction along the plate is compared in figure 7
with the Prandtl-Schlichting formula for a smooth flat plate (ref. 10). For
the cases shown the grid was defined by the following parameters:

Viscous Inviscid

M= 4 M = 41

N = 54 N = 61

a = 2048 Ay = 0.2, 0.3, 0.4
ne = 0.08 Ay = 20

Ay, = 20

The solutions for the three values of Ay cannot be differentiated on
the scale of figure 7. For values of A, > 0.4, however, the solutions
diverged while values of Ay < 0.2 1left too few points outside the boundary
layer on the inviscid mesh, and hence were not run. The three cases of
Ax = 0,2, 0.3, and 0.4 took 17, 15, and 54 global iterations requiring 35,
30, and 102 seconds, respectively, on the Control Data CYBER 175 computer to
achieve convergence.

The turbulent case thus appears somewhat more sensitive to the resolution
of the boundary layer by the pressure calculation than the laminar case. For
the case of Ay = 0.4, the first pressure grid point off the wall corresponds
to y/8 = 0.37 at x = 2.44, the first turbulent profile. For the turbulent
case, resolution coarser than this leads to divergent solutions rather than
inaccurate solutions as in the laminar case. On the other hand, these results
show that the pressure grid does not have to resolve the details of the turbu-
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lent boundary layer near the wall in order to produce accurate results, pro-
vided the viscous mesh is fine enough.

In view of the results for the laminar case, the apparent accuracy of the
turbulent calculations is surprising since the basic potential function does
not properly account for the decay of the normal component of velocity as
y * ® It should first be noted, however, that the predicted solution in
figure 7 does begin to depart from the data curve fit at the higher values of
Ry and examination of the normal-velocity profiles in this vicinity does show
some small negative values near the wall. Secondly, the values predicted by
any finite-difference program of this type depend upon the transition history
and turbulence model employed. Thus, for this case an exact solution is not
available for comparison, as in the laminar case. Hence, a direct quantitative
error estimate is not possible. In addition, it can be seen from figure 7 that
the predicted values of skin friction are in error in the laminar region. This
error is attributed to the upstream influence of the transition region through
the pressure calculation.

It should finally be noted that for turbulent calculations the Newton
iteration in the viscous marching-column solution did not converge quadrati-
cally. This is in agreement with the results of reference 9.

Finite Flat Plate

The third problem chosen for solution in the current investigation is the
laminar finite flat plate for R = 5 x 104, 1In this problem, a singularity
exists at the trailing edge of the plate due to the discontinuous boundary con-
dition. Calculations were made with the present method using coincident pres-
sure and viscous meshes with B = 0. Results of these calculations are shown
in figures 8 to 10. In these figures, the following triple-deck scaled quanti-
ties are presented:

A5/4(x - Xte)

X =
e3x¢e
u

U =

exl/4

p - pm
P = 1———

2
e = p-1/8 (A = 0.33206)
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These results are compared with the triple-deck theory solutions of Melnik
and Chow (ref. 12) and Jobe and Burggraf (ref. 13). Figure 8 presents the
wall/centerline pressure distribution in the vicinity of the trailing edge,
figure 9 the wall shear, and figure 10 the wake centerline velocity distribu-
tion. Agreement between the present calculations and triple-deck theory is
excellent. The better agreement between the present results and those of
reference 13 is attributed to the fact that the results of reference 12 were
calculated on a much finer grid than that used in either the current calcula-
tions or those of reference 13. Additional calculations were made with the
pressure solution obtained on every second and fourth viscous mesh point with
no plottable difference in the results. The calculations required 75 seconds
of CYBER 175 time for the coincident mesh case, whereas the two coarser grid
calculations required 50 and 39 seconds, respectively.

CONCLUDING REMARKS

It is concluded from the current investigation that the split-velocity
Navier-Stokes formulation can be used to obtain accurate solutions to the
Navier-Stokes equations for finite and semi-infinite flat plates. Results of
the pressure-mesh coarsening studies carried out in this investigation also
indicate that the method can be used to retrofit a viscous capability into
existing potential-flow codes. In order to retrofit such a capability, how-
ever, care must be taken to adequately resolve the viscous layer with the pres-
sure grid. Since existing potential-flow computer programs have computational
grids selected to resolve purely inviscid phenomena, only in special cases can
the retrofit be made without altering the grid. For the commonly used numeri-
cal schemes in modern potential-flow programs, the introduction of a known
function on the right-hand side of the potential equation poses no difficulty.

For the problems studied in the current investigation, the computational
efficiency of the method appears unaffected by Reynolds number. The reason
is that in any given calculation the bulk of the computational effort (about
80 percent) is in the viscous marching calculation. In this portion of the
calculation, the effect of Reynolds number is accounted for by scaling the
viscous grid. Hence, the total computation time for a given viscous marching
sweep is unaffected by Reynolds number. Finer resolution of the viscous region
by the pressure grid at higher Reynolds number does slow this portion of the
calculation down but has little effect on the overall computation time. For
this reason, the method appears promising for calculating steady, high Reynolds
number, external flows.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

March 18, 1980
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TABLE 1.- EFFECT OF PRESSURE-MESH COARSENING ON

OVERALL SOLUTION ACCURACY FOR RELATED MESHES

Number of Percent error CYBER 175
y-points in friction I time,
(pressure) drag sec
58 -0.50 45 47
30 -1.40 25 20
16 3.70 12 8
9 3.73 9 6

TABLE 2.- EFFECT OF PRESSURE-MESH COARSENING ON

SOLUTION ACCURACY FOR INDEPENDENT MESHES

x = 33,33
Wall mesh Percent error in

ratio friction drag Number of y-points in N

boundary layer (pressure) 1
2.06 -0.49 46 0.998
4.1 -.70 32 .996
8.23 -.16 19 .998
16.45 2.46 10 1.029
32.90 13.4 5 1.142
65.79 23.0 3 1.327
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